Microvascular Dysfunction: Physiologic Evaluation and Its Clinical Implication

Joo Myung Lee, MD, MPH, PhD

Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea

Introduction FFR > 0.80 did not mean no ischemia

In patients with FFR>0.80 (registry arm in FAME II) 9.0 % experienced all-cause death, MI, and urgent revasc. 14.6% showed persistent CCS II-IV angina at 2-years

Potential Causes of Cardiac Events/ Chest Pain in Deferred Patients

- Progression of atherosclerosis
- Pain or event due to non-atherosclerotic coronary disease
- Vulnerability
- Hidden disease, diffuse atherosclerosis
- Microvascular disease

<5% of the total coronary tree

Ischemic Heart Disease

Figure 1. Functional Anatomy of the Coronary Arterial System.

- Coronary Arterial System is composed of three compartments
- Any of these compartments fail to maintain sufficient O2, myocardial ischemia can occur.
- Therefore, the presence of epicardial coronary stenosis is not always a "prerequisite" for the IHD.

Typical Angina, TMT (+)

Diagnosis of Micro-Vascular Disease

Exercise Duration : 9 min 58 sec, 12.8 METS Chest pain during Stage 3 and 4 Horizontal ST depression in II, III, aVF, V3, V4, V5 Duke score : -5 (moderate risk)

SAMSUNG MEDICAL CENTER

SAMSUNG

```
Lee JM and Koo BK et al. Korean Circulation Journal 2018
```

Unsolved Issues for Microvascular Disease

[Primary Microvascular disease]

- ① Distribution and Abnormal value of IMR values in non-MI patients
- ② Whether Macro- and Micro- disease has independent disease process?
- ③ Predictors of High IMR and Low FFR
- **④** Clinical Prognosis of Patients with Microvascular disease
- **(5)** Mechanism of Clinical Events in Patients with Microvascular disease
- **6** Effective Treatment of Microvascular Disease

[Secondary Microvascular Damage after AMI or Procedure-related]

- **1** Is it "Regional Problem" or "Globalization will be occurred?"
- **②** Non-Culprit stenosis evaluation with FFR
- **③** How can we reduce MV damage after successful revascularization

Primary Microvascular Disease

International IMR registry - 1,096 patients with 1,452 coronary arteries -

To explore clinical relevance of microvascular assessment using IMR in addition to the current FFR guided strategy in non-MI patients

[Primary Microvascular disease]

- **1** Distribution and Abnormal value of IMR values in non-MI patients
- 2 Whether Macro- and Micro- disease has independent disease process?
- **③** Predictors of High IMR and Low FFR
- **(4)** Clinical Prognosis of Patients with Microvascular disease
- **(5)** Mechanism of Clinical Events in Patients with Microvascular disease
- 6 Effective Treatment of Microvascular Disease

Distribution of FFR and IMR in 1,452 Lesions International IMR registry (Non-MI Population)

SAMSUNG MEDICAL CENTER

```
SAMSUNG
```

Lee JM , Koo BK et al. Circ Intervention 2015

Association between Angio, FFR, IMR in 1,452 Lesions International IMR registry (Non-MI Population)

- FFR showed significant correlation with angiographic %DS
- IMR did not show any correlation with angiographic %DS

SAMSUNG MEDICAL CENTER SAMSUNG

Lee JM , Koo BK et al. Circ Intervention 2015

Correlations between SYNTAX Score and IMR 3-vessel FFR/IMR measure subgroups

Kobayashi Y, Fearon WF, Lee JM, Koo BK et al. Circulation Intervention 2017

Different Independent Predictor for High-IMR or Low-FFR International IMR registry

Independent Predictor for High-IMR or Low-FFR in Target Vessels

High-IMR (≥75 th percentile <u>)</u>				Low-FFR (≤0.80)			
	OR	95% CI	P value		OR	95% CI	P value
Previous MI	2.16	1.24-3.74	0.006	LAD	5.92	3.73-9.41	<0.001
RCA	2.09	1.54-2.84	<0.001	%DS ≥50%	5.84	3.98-8.56	<0.001
Female	1.67	1.18-2.38	0.004	Male	2.25	1.38-3.66	0.001
Obesity	1.8	1.31-2.49	<0.001	Age	1.02	1.00-1.04	0.046

• Completely different predictors between High-IMR and Low-FFR

Korean Registry for Comprehensive Physiologic Evaluation - 313 patients with 663 coronary arteries -

• To evaluate the prognostic implications of abnormal CFR and IMR in high-FFR patients.

[Primary Microvascular disease]

- ① Distribution and Abnormal value of IMR values in non-MI patients
- ② Whether Macro- and Micro- disease has independent disease process?
- ③ Predictors of High IMR and Low FFR
- **④** Clinical Prognosis of Patients with Microvascular disease
- **(5)** Mechanism of Clinical Events in Patients with Microvascular disease
- **6** Effective Treatment of Microvascular Disease

Distribution of patients according to FFR and CFR

SAMSUNG MEDICAL CENTER SAMSUNG

Distribution of High-FFR patients according to CFR and IMR

Comparison of Clinical, Angiographic Findings Among 4 Group of High-FFR population

	Group A	Group B	Group C	Group D	p value		
Age, years	60.2 ± 9.9	63.9 ± 7.1	65.6 ± 9.7	62.6 ± 9.9	0.017		
Male BMI, k Those patients can be only discriminated							
Diabet	ltiple physic	ologic criter	ia (FFR, CFI	R, IMR).	34		
Hypercholesterolemia	88 (62.4%)	23 (54.8%)	17 (54.8%)	7 (43.8%)	0.434		
Current smoker	25 (17.7%)	6 (14.3%)	3 (9.7%)	2 (12.5%)	0.687		
Family history	23 (16.3%)	7 (16.7%)	3 (9.7%)	1 (6.3%)	0.548		
Previous MI	6 (4.3%)	2 (4.8%)	0 (0.0%)	0 (0.0%)	0.541		
Previous PCI	40 (28.4%)	7 (16.7%)	9 (29.0%)	2 (12.5%)	0.263		
Multivessel disease	57 (40.4%)	12 (28.6%)	14 (45.2%)	3 (18.8%)	0.163		
Gensini score	12.0 (6.5-25.5)	11.3 (5.0-18.8)	20.5 (9.0-37.0)	9.3 (4.8-19.5)	0.114		
Angiographic characteristics							
Poforonco diamotor	3 02 (2 05 3 00)	3 18 (3 03 3 34)§	2 01 (2 80 3 01)‡	3 10 (2 02 3 32)	0.017		

Comparison of Clinical Outcomes Among 4 Group of High-FFR population

Days From Index Procedure

Lee JM , Koo BK et al. JACC 2016

Independent Predictors of POCO Among High-FFR population

Clinical/Angiographic Variables Only

Model with Physiologic Index

Model 1	HR	95% CI	Р	Model 2	HR	95% CI	Ρ
Multivessel disease	3.254	1.082-9.787	0.033	Low-CFR and high-IMR	4.914	1.541-15.66	0.007
Diabetes mellitus	2.828	1.088-7.349	0.033	Multivessel disease	3.639	1.238-10.669	0.019
				Diabetes mellitus	2.714	1.050-7.016	0.039

Improved discriminant function (Model2)

- Relative IDI: 0.467, p=0.037
- Category-free NRI: 0.648, p=0.007

Summary

- Macro- and micro-vascular diseases seems to possess "independent disease process" with "different predictors for its development", although complex interaction could be presented.
- Among the high-FFR patients (functionally insignificant macrovascular disease), about 7.0% of patient showed overt microvascular disease (low-CFR and high-IMR).
- Presence of overt microvascular disease was associated with poor prognosis in high FFR population.
- Comprehensive physiologic evaluation is essential to stratify those patients with overt microvascular disease.